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BAYESIAN INFERENCE 

Harry V. Roberts, University of Chicago 

Bayesian inference or Bayesian statistics 

is an approach to statistical inference based 
on the theory of subjective probability. A 
formal Bayesian analysis leads to probabilistic 
assessments of the object of uncertainty. For 
example, a Bayesian inference might be: "The 

probability is .95 that the mean of a normal 
distribution lies between 12.1 and 23.7." The 
number .95 represents a degree of belief, either 
in the sense of "subjective probability con- 
sistent" or "subjective probability rational" 
(see PROBABILITY: PHILOSOPHY AND INTERPRETA- 
TION, which should be read in conjunction with 
the present article); .95 need not and typically 
does not correspond to any "objective" long 
relative frequency. Very roughly, a degree of 
belief of .95 can be interpreted as betting odds 
of 95 to 5 or 19 to 1. A degree of belief is 
always potentially a basis for action; for 
example, it may be combined with utilities by 
the principle of maximization of expected util- 
ity (see STATISTICAL DECISION THEORY). 

By cóntrast, the traditional or "classical" 
approach to inference leads to probabilistic 
statements about the method by which a particu- 
lar inference is obtained. Thus a classical 
inference might be: "A .95 confidence interval 
for the mean of a normal distribution extends 
from 12.1 to 23.7." The number .95 here 
represents a long -run relative frequency, namely 
the frequency with which intervals obtained by 
the method that resulted in the present interval 
would in fact include the unknown mean. (It is 

not to be inferred from the fact that we used the 
same numbers, .95, 12.1, and 23.7, in both illus- 
trations that there will necessarily be a nu- 
merical coincidence between the two approaches.) 

The term "Bayesian" arises from an elemen- 
tary theorem of probability theory, named after 
the Rev. Thomas Bayes, an English clergyman of 
the 18th century, who first enunciated it and 
proposed its use in inference. Bayes' theorem 
is typically used in the process of making 
Bayesian inferences, as will be explained below. 
For a number of historical reasons, however, 
current interest in Bayesian inference is quite 
recent -- dating, say, from the 1950's. Hence 
the term "neo- Bayesian" is sometimes used in- 
stead of "Bayesian." 

An Illustration of Bayesian Inference 

For a simple illustration of the Bayesian 
approach, consider the problem of making infer- 
ences about a Bernoulli process with parameter 
p. A Bernoulli process can be visualized in 

A revised version of this paper will ap- 
pear in the (forthcoming) International 
Encyclopedia of the Social Sciences. 

terms of repeated independent tosses of a not - 
necessarily "fair" coin. It generates "heads" 
and "tails" in such a way that the conditional 
probability of heads on a single trial is always 
equal to a parameter p regardless of the pre- 
vious history of heads and tails. 

Suppose first that we have no direct sample 
evidence from the process. Based on experience 
with similar processes, introspection, general 
knowledge, etc., we may be willing to translate 
our judgments about the process into probabilist- 
ic terms. For example, we might assess a 
(subjective) probability distribution for p 
(the tilde "N " indicates that we are now think- 
ing of the parameter p as a random variable). 
Such a distribution is called a prior distribu- 
tion because it is usually assessed prior to 
sample evidence. Purely for illustration) 
suppose that the prior distribution of is 

uniform on the interval from 0 to 1: the 
probability that p lies in any subinterval is 
that subinterval's length, no matter where the 
subinterval is located between 0 and 1. Now 
suppose that we observe heads, heads, and tails 
on three tosses of a coin. The probability of 
observing this sample, conditional on p, is 

P2(1-P) 

If we regard this expression as a function of 
p, it is called the likelihood function of the 
sample. Bayes' theorem shows how to use the 
likelihood function in conjunction with the 
prior distribution to obtain a revised or 
posterior distribution of p. "Posterior" means 
after the sample evidence, and the posterior 
distribution represents a reconciliation of 
sample evidence and prior judgment. In terms 
of inferences about p, we may write Bayes' 
theorem in words as 

Posterior probability (density) at p, 

given the observed sample = 

Prior probability (density) at p x likelihood 
Prior probability of the observed sample 

Expressed mathematically, 

f"(Pir,n) 
fl(P) Pr(l-P)n 

r 

ft(P) Pr(1-1))n-rdp 

where f'p) denotes the prior density of p, 
)n- denotes the likelihood if r heads (1-P 

are observed in n trials, and f "(plr,n) 
denotes the posterior density of p given the 
sample evidence. 



In our example, f'(p) = 1, (0 < p < 1), r = 2, 
n = 3, and 

so 

V(P) Pr(1-P)n = 

= 1/12 

f"(PIr = 2, 3) = 12 p2(1-p), 

= 0 otherwise. 

Thus we emerge from the analysis with an 
explicit probability distribution for p. This 
distribution c.Aracterizes fully our judgments 
about It could be applied in a formal 
decision -theoretic analysis in which utilities 
of alternative acts are functions of p. For 
example, we might make a Bayesian point estimate 
of p (each possible point estimate is regarded 
as an act), and the seriousness of an estimation 
error ( "loss ") might be proportional to the 
square of the error. The best point estimate 
can then be shown to be the mean of the pos- 
terior distribution; in our example, this would 
be .6. Or, we might wish to describe certain 
aspects of the posterior distribution for 
summary purposes; it can be shown, for example, 
that 

P(5<.194) = and P(p>.932) = .025 , 

so a .95 "credible interval" for p extends 
from .194 to .932. Again, it can be shown that 

= .688: the posterior probability that 
the coin is "biased" in favor of heads is a 
little over 2/3. 

The Likelihood Principle 

In our example, the effect of the sample 
evidence was wholly transmitted by the likeli- 
hood function. All we needed to know from the 
sample was p)n -r; the actual sequence of 
individual observations was irrelevant so long 
as we believed the assumption of a Bernoulli 
process. In general, a full Bayesian analysis 
requires as inputs for Bayes' theorem only the 
likelihood function and the prior distribution. 
Thus the import of the sample evidence is fully 
reflected in the likelihood function, a princi- 
ple known as the likelihood principle (see also 
LIKELIHOOD). Alternatively, given that the 
sample is drawn from a Bernoulli process, the 
import of the sample is fully reflected in the 
numbers r and n, which are called sufficient 
statistics (see SUFFICIENCY). 

The likelihood principle implies certain 
consequences that do not accord with tradi- 
tional ideas. Here are examples: (1) Once 

77 

the data are in, there is no distinction be- 
tween sequential anAiysis and analysis for 
fixed sample size. In the Bernoulli example, 
successive samples of n1 and n2 with 
r and r successes could be analyzed as one 
pooled sample of + n2 trials with 
r1 + successes. Alternatively, a posterior 
distribution could be computed after the first 
sample of nl; this distribution could then 
serve as a prior distribution for the second 
sample; finally, a second posterior distribution 
could be computed after the second sample of 

. By either route the posterior distribution 
after + n2 observations would be the same. 
Under almost any situation that is likely to 
arise in practice, the "stopping rule" by which 
sampling is terminated is irrelevant to the 
analysis of the sample. For example, it would 
not matter whether r successes in n trials 
were obtained by fixing r in advance and 
observing the rth success on the nth trial, 
or by fixing n in advance and counting r 
successes in the n trials. (2) For the pur- 
pose of statistical reporting, the likelihood 
function is the important information to be 
conveyed. If a reader wants to perform his own 
Bayesian analysis, he needs the likelihood 
function, not a posterior distribution based on 
someone else's prior, nor traditional analyses 
such as significance tests, from which it may be 
difficult or impossible to recover the likeli- 
hood function. 

Vagueness about Prior Probabilities 

In our example we assessed the prior dis- 
tribution of as a uniform distribution from 
0 to 1. It is sometimes thought that such an 
assessment means that we "know" p is so 
distributed, and that our claim to knowledge 
might be verified or refuted in some way. It is 

indeed possible to imagine situations in which 
the distribution of might be known, as when 
one coin is to be drawn at random from a number 
of coins, each of which has a "known" p deter- 
mined by a very large number of tosses. The 
frequency distribution of these p's would then 
serve as a prior distribution, and all statisti- 
cians would apply Bayes' theorem in analyzing 
sample evidence. But such an example would be 
unusual. Typically, in making an inference 
about for a particular coin, the prior dis- 
tribution of is not a description of some 
distribution of p's but rather a tool for 
expressing judgments about based on evidence 
other than the evidence of the particular sample 
to be analyzed. 

Not only do we rarely "know" the prior 
distribution of p, but we are typically more 
or less vague when we try to assess it. This 
vagueness is comparable to the vagueness that 
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surrounds many decisions in everyday life. For 
example, a person may decide to offer 421,250 
for a house he wishes to buy, even though he may 
be quite vague about what amount he "should" of- 
fer. Similarly, in statistical inference we 
may assess a prior distribution in the face of 
a certain amount of vagueness. If we are not 
willing to do so, we cannot pursue a formal 
Bayesian analysis and must evaluate sample evi- 
dence intuitively, perhaps aided by the tools of 
descriptive statistics and classical inference. 

Vagueness about prior probabilities is not 
the only kind of vagueness to be faced in sta- 
tistical analysis, and the other kinds of vague- 
ness are equally troublesome for approaches to 
statistics that do not use prior probabilities. 
Vagueness about the likelihood function, that is, 
the process generating the data, is typically 
substantial and hard to deal with. Moreover, 
both classical and Bayesian decision theory 
bring in the idea of utility, and utilities 
often are vague. 

In assessing prior probabilities, skillful 
self -interrogation is needed in order to 
mitigate vagueness. Self- interrogation may be 
made more systematic and illuminating in several 
ways. (1) Direct judgmental assessment. In 
assessing the prior distribution of for 
example, we might ask, "For what p would we 
be indifferent to an even money bet that p is 
above or below this value ?" (Answer is the 
.50- or median.) Then, "If we were told 
that p is above the .50- fractile just assessed, 
but nothing more, for what value of p would we 
now be indifferent in such a bet ?" (Answer is 
the .75- fractile.) Similarly we might locate 
other key fractiles, or key relative heights on 
the density function. (2) Translation to 
equivalent but hypothetical prior sample evi- 
dence. For example, we might feel that our prior 
opinion about p is roughly what it would have 
been if we had initially held a uniform prior, 
and then seen r heads in n hypothetical 
trials from the process. The implied posterior 
distribution would serve as the prior. (3) 

Contemplation of possible sample outcomes. 
Sometimes we may find it easy to decide directly 
what our posterior distribution would be if a 
certain hypothetical sample outcome were to 
materialize. We can then work backwards to see 
the prior distribution thereby implied. Of 
course, this approach is likely to be helpful 
only if the hypothetical sample outcomes are 
easy to assimilate. For example, if we make a 
certain technical assumption about the general 
shape of the prior distribution (beta distribu- 
tion), the answers to the following two simply - 
,tated questions imply a prior distribution of 

p: (a) How do we assess the probability of 
heads on a single trial? (b) If we were to 
observe a head on a single trial (this is the 

hypothetical future outcome) how would we 
assess the probability of heads on a second 
trial? 

These approaches are intended only to be 
suggestive. If several approaches to self - 
interrogation lead to substantially different 
prior distributions, we must either try to 
remove the internal inconsistency or be content 
with an intuitive analysis. Actinfly, from the 
point of view of "subjective probability con- 
sistent," the discovery of internal inconsist- 
ency in one's judgments is the only route toward 
more "rational" decisions. The danger is not 
that internal inconsistencies will be revealed 
but that they will be suppressed by self - 
deception or glossed over by lethargy. 

It may happen that vagueness affects only 
unimportant aspects of the prior distribution: 
theoretical or empirical analysis may show that 
the posterior distribution is insensitive to 
these aspects of the distribution. For example, 
we may be vague about many aspects of the prior 
distribution, yet feel that it is nearly 
uniform over all values of the parameter for 
which the likelihood function is not essentially 
zero. This has been called a diffuse, informa- 
tionless, or locally - uniform prior distribution. 
These terms are to be interpreted relative to 
the spread of the likelihood function, which 
depends on the sample size; a prior that is 
diffuse relative to a large sample may not be 
diffuse relative to a small one. If the prior 
distribution is diffuse, the posterior distri- 
bution can be easily approximated from the 
assumption of a strictly uniform prior distri- 
bution. The latter assumption, known histori- 
cally as Bayes' postulate (not to be confused 
with Bayes' theorem), is regarded as a 
device that leads to good approximations in 
certain circumstances, although supporters of 
"subjective probability rational" sometimes 
regard it as more than that in their approach to 
Bayesian inference. The uniform prior is also 
useful for statistical reporting, since it leads 
to posterior distributions from which the likeli- 
hood is easily recovered and presents the results 
in a form readily usable to any reader whose 
prior distribution is diffuse. 

Probabilistic Prediction 

A distribution, prior or posterior, of the 
parameter of a Bernoulli process implies a 
probabilistic prediction for any future sample 
to be drawn from the process, assuming that the 
stopping rule is given. For example, the 
denominator in the right hand side of the Bayes' 
formula for Bernoulli sampling (p. 3) can be 
interpreted as the probability of obtaining the 
particular sample actually observed, given the 



prior distribution of p. While a person's 
subjective probability distribution of can- 
not be said to be "right" or "wrong," there are 
better and worse subjective distributions, and 
the test is predictive accuracy. Thus if Mr. A 
and Mr. B each has a distribution for p, and 
a new sample is then observed, we can calculate 
the probability of the sample in the light of 
each prior distribution. The ratio of these 
probabilities, technically a marginal likelihood 
ratio, measures the extent to which the data 
favor A over B or vice - versa. This idea has 
important consequences for evaluating judgments 
and selecting statistical models. 

In connection with the previous paragraph 
a separate point is worth making. The posterior 
distributions of A and B are bound to grow 
closer together as sample evidence piles up, so 
long as neither of the priors was dogmatic. An 
example of a dogmatic prior would be the opinion 
that p is exactly .5. 

Multivariate Inference and Nuisance Parameters 

Thus far we have used one basic example, 
inferences about Bernoulli process. To 
introduce some additional concepts, we now turn 
to inferences about the mean of a2normal 
distribution with unknown variance a . In this 
case we begiR with a joint prior distribution 
for and 7. The likelihood function is now a 
function of two variables, and An 
inspection of the likelihood function will show 
not only that the sequence of observations is 

irrelevant to inference, but also that the 
magnitudes are irrelevant except insofar as they 
hhlp determine the sample mean and variance 
s', which, along with the sample size n, are 
the sufficient statistics of this example (see 
SUFFICIENCY). The prior distribution combines 
with the likelihood essentially as before ex- 
cept that a double integration (or double 
summation) is needed instead of a single inte- 
gration (or summation). The resul is a joint 
posterior distribution of 

If we are interested only in then a2 
is said to be a nuisance parameter. In principle 
it is simple to deal with a nuisance parameter: 
we "integrate it out" of the posterior distribu- 
tion. In our example this means that we must 
find the marginal distribution of m the 
joint posterior distribution of and 

Multivariate problems and nuisance para- 
meters can always be dealt with by the approach 
just described. The integrations required may 
demand heavy computation, but the task is 
straightforward. A more difficult problem is 
that of assessing multivariate prior distribu- 
tions, and research is needed to find better 

79 

techniques for overcoming the problems presented 
by vagueness in such assessments. 

Design of Experiments and Surveys 

So far we have talked only about problems 
of analysis of samples, without saying anything 
about what kind of sample evidence, and how 
much, should be sought. This kind of problem 
is known as a problem of design. A formal 
Bayesian solution of a design problem requires 
that we look beyond the posterior distribution 
to the ultimate decisions that will be made in 
the light of this distribution: the best 
design depends on the purposes to be served by 
collecting the data. Given the specific pur- 
pose and the principle of maximization of 
expected utility, it is possible to calculate 
the expected utility of the best act for any 
particular sample outcome. We can repeat this 
for each possible sample outcome for a given 
sample design. Next, we can weight each such 
utility by the probability of the corresponding 
outcome in the light of the prior distribution. 
This gives an overall expected utility for any 
proposed design. Finally, we pick the sample 
design with the highest expected utility. For 
two- action problems- -e.g., deciding whether a 
new medical treatment is better or worse than 
a standard treatment - -this procedure is in no 
conflict with the traditional approach of 
selecting designs by comparing operating 
characteristics, although it formalizes certain 
things - -prior probabilities and utilities- -that 
often are treated intuitively in the traditional 
approach. 

Comparison of Bayesian and Classical Inference 

Certain common statistical practices are 
subject to criticism either from the point of 
view of Bayesian or of classical theory: for 
example, estimation problems are frequently 
regarded as tests of null hypotheses, and .05 
or .01 significance levels are used inflexibly. 
Bayesian and classical theory are in many 
respects closer to each other than either is to 
everyday practice. In comparing the two ap- 
proaches, therefore, we shall confine the 
discussion to the level of underlying theory. 
In one sense the basic difference is the 
acceptance of subjective probability judgment 
as a formal component of Bayesian inference. 
This does not mean that classical theorists 
would disavow judgment, only that they would 
apply it informally after the "purely 
statistical" analysis is finished: judgment is 
the "second span in the bridge of inference." 
Building on subjective probability, Bayesian 
theory is a unified theory, whereas classical 
theory is diverse and ad hoc. In this sense 
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Bayesian theory is simpler. But in another 
sense Bayesian theory is more complex because it 
incorporates more into the formal analysis. 
Consider a famous controversy of classical sta- 
tistics, the problem of comparing the means of 
two normal distributions with possibly unequal 
and unknown variances (the so- called "Behrens - 
Fisher" problem). Conceptually this problem 
poses major difficulties for some classical 
theories (not Fisher's fiducial inference; see 
FIDUCIAL INFERENCE), but none for Bayesian theory. 
In application, however, the Bayesian approach 
faces the problem of assessing a prior distribu- 
tion involving four random variables. Moreover, 
there may be messy computational work after the 
prior distribution has been assessed. 

In many applications, however, a credible 
interval emerging from the assumption of a 
diffuse prior distribution is identical or 
nearly identical to the corresponding confidence 
interval. There is a difference of interpreta- 
tion, illustrated in the opening two paragraphs 
of this article, but in practice many people 
interpret the classical result in the Bayesian 
way. There often are numerical similarities 
between the results of Bayesian and classical 

of the same data, but there can also be 
substantial differences, for example, when the 
prior distribution is non -diffuse and when a 
genuine null hypothesis is to be tested. 

Often it may happen that the problem of 
vagueness, discussed at some length above, makes 
a formal Bayesian analysis seem unwise. In this 
event Bayesian theory may still be of some value 
in selecting a descriptive analysis or a clas- 
sical technique that conforms well to the 
general Bayesian approach, and perhaps in modi- 
fying the classical technique. For example, 
many of the classical developments in sample 
surveys and analysis of experiments can be given 
rough Bayesian interpretations when vagueness 
about the likelihood (as opposed to prior 
probabilities) prevents a full Bayesian analysis. 
Moreover, even an abortive Bayesian analysis may 
contribute insight into a problem. 

Bayesian inference has as yet received much 
less theoretical study than has classical infer- 
ence. It is hard at this writing to predict how 
far Bayesian theory will lead in modification 
and reinterpretation of classical theory. 
Before a fully Bayesian replacement is available 
there is certainly no need to discard those 

classical techniques that seem roughly compati- 
ble with the Bayesian approach; indeed, many 
classical techniques are, under certain condi- 
tions, good approximations to fully Bayesian 
ones. In the meanwhile, the interaction between 
the two approaches promises to lead to fruitful 
developments in statistical inference, and the 
Bayesian approach promises to illuminate a 
number of problems - -such as allowance for 
selectivity- -that are otherwise hard to cope 
with. 

A Few Suggestions for Further Reading 

The first book -length development of 
Bayesian inference, which emphasizes heavily 
the decision - theoretic foundations of the 
subject, is Robert Schleifer, Probability and 
Statistics for Business Decisions (New York: 
McGraw -Hill Book Company, Inc., 1959). A more 
technical development of the subject is given 
by Howard Raiffa and Robert Schleifer, Applied 
Statistical Decision Theory (Boston: Division 
of Research, Graduate School of Business 
Administration, Harvard University, 1961). An 
excellent short introduction with an extensive 
bibliography is Leonard J. Savage, " Bayesian 
Statistics," in Robert E. Machol and Paul Gray, 
eds., Recent Developments in Information and 
Decision Processes (New York: The Macmillan 
Company, 1962). An interesting application of 
Bayesian inference is given, along with a 
penetrating discussion of underlying philosophy 
and a comparison with the corresponding clas- 
sical in Frederick Mosteller and 
David L. Wallace, "Inference in an Authorship 
Problem," Journal of the American Statistical 
Association (Vol. 58, 1963), pp. 275-310. A 
fuller description of this study will be found 
in Mosteller and. Wallace, Inference and 
Disputed Authorship: the Federalist Papers. 
(Reading, Massachusetts: Addison-Wesley 
Publishing Company, Inc., in press.) This 
study gives a specific example of how one might 
cope with vagueness about the likelihood func- 
tion. Another example is to be found in George 
E. P. Box and George C. Tiao, "A Further Look 
at Robustness via Bayes' Theorem," Biometrika 
(Vol. 49, 1962), pp. 419 -432. A thorough 
development of Bayesian inference from the 
viewpoint of "subjective probability rational" 
is to be found in Harold Jeffreys, Theory of 
Probability (Oxford: Clarendon Press, 3rd 
edition, 1961). 


